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Abstract

Multiphase flow in porous media provides a wide range of applications: from the environmental understanding

(aquifer, site-pollution) to industrial process improvements (oil production, waste management). Modeling of such

flows involve specific volume-averaged equations and therefore specific computational fluid dynamics (CFD) tools.

In this work, we develop a toolbox for modeling multiphase flow in porous media with OpenFOAM®, an open-

source platform for CFD. The underlying idea of this approach is to provide an easily adaptable tool that can be

used in further studies to test new mathematical models or numerical methods. The package provides the most

common effective properties models of the literature (relative permeability, capillary pressure) and specific boundary

conditions related to porous media flows. To validate this package, a solvers based on the IMplicit Pressure Explicit

Saturation (IMPES) methodare developed in the toolbox. The numerical validation is performed by comparison

with analytical solutions on academic cases. Then, a satisfactory parallel efficiency of the solver is shown on a more

complex configuration.
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Programming language : C++

Computer : any x86

Operating system : Generic Linux

Classification : 12

External routines : OpenFOAM® (version 2.0 and higher)

Nature of problem : This software solves multiphase flow in porous media.

Solution method : The numerical approach is based on the finite-volume method (FVM). Mass conservation

equations for each fluid phase are reformulated into a pressure-saturation system. The generalized Darcy’s law is

used to compute phase velocities in the porous medium. The pressure-saturation is solved using a segregated method

based on the IMPES method . Parallel computing can be performed using the standard domain decomposition

method of OpenFOAM®.

Keywords: Porous Media, multiphase flow, IMPES method, OpenFOAM®

1. Introduction

Simulation of multiphase fluid flow in heterogeneous porous media is of great importance in many areas of

science and engineering including:

• hydrology and groundwater flow,

• oil and gas reservoirs,

• gas-liquid contactors,

• waste management, biodegradation, and so on.

In this work, only the common features of these different flows are considered, i.e. an isothermal and incompressible

two-phase flow with capillary effects. Others physical features such as phase changes or compressibility of phases

are not in the scope of this paper but are possible further developments of the presented toolbox. Due to the high

complexity of the solid structure and possible large dimensions of the computational domain, the common strategy

consists of defining volume averaged balance equations with effective properties such as permeabilities, porosity,

etc., which take into account the microscopic flow morphology of the studied problem. With such an approach, a
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cell of the grid contains both fluid and solid. As usually done for the multiphase flow in porous media, the concept

of “saturation” is defined as the volumic filling rate of a fluid phase (gas or liquid) with the void space of this cell

and all properties, phase velocities, phase pressures, etc. are considered homogeneous within the computational cell.

Readers interested in the averaging process can be referred to Das and Hassanizadeh [1] where a state-of-the-art in

modeling and experimental techniques to study multiphase flow phenomena in porous media has been done with a

focus on upscaling.

In the last decade, several open-source simulators dedicated to porous media flows have been developed such as,

for example, Dumux [2], MRST [3], OpenGeoSys [4] and PFlotran[5]. The open-source platform used in this work,

OpenFOAM®[6, 7], does not belong to this list since it has not been conceived as a specialized simulation tool but

as a general toolbox for solving partial differential equations. However, with growing community and popularity,

the use of OpenFOAM® to simulate flow through porous materials becomes more and more prevalent. In the

usual OpenFOAM® solvers, porous medium flows are modeled by adding viscous and inertial resistance terms in

the Navier-Stokes momentum equation to obtain, in the porous domain, the commonly called Darcy-Forchheimer

law [8]. A mask function allows to define both “porous” areas with Darcy and Forchheimer coefficients, and “free”

areas where the classical momentum equation is solved. The porous medium model is generic and can therefore

easily be used to develop new OpenFOAM® solvers. It has been used, for example, to study compressible reacting

flows [9], mass transfer in solid oxide fuel cells [10] or interaction of waves and coastal porous structures [11, 12].

However, the current porous medium handling in OpenFOAM® does not allow to simulate the common features

of multiphase flow in porous media, mainly because it lacks some essential elements to this modeling, such as,

phase saturations, relative permeability models, capillarity models, and specific boundary conditions. With an

efficiency demonstrated in many fields of fluid mechanics, it seems therefore an appealing possibility to develop, in

the OpenFOAM® standards, a dedicated toolbox that could serve as a basis for the study of multiphase flow in

porous medium.

In this paper, we present a toolbox to simulate multiphase flow in porous media. Instead of solving a modi-

fied Navier-Stokes system, we solve the mass conservation equations for each fluid where the phase velocities are

expressed using a generalization of Darcy’s law [13]. Comprehensive reviews of the numerical methods available

to solve this kind of problem can be found in the literature (see for example Aziz and Settari [14], Gerritsen and

Durlofsky [15] or Chen et al. [16]). Two main methods can be retained to treat multiphase flow in porous media:
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(i) a sequential approach, IMplicit Pressure Explicit Saturation (IMPES) and (ii) a coupled approach, i.e. the

“fully-implicit”. The IMPES methodology treats all terms that depend on saturation, except the transient terms,

as explicit functions of saturation. This allows saturation to be decoupled from the pressure, resulting in a smaller

system of equations to be solved implicitly. This reduces significantly the computational effort. However, because

IMPES involves some explicit terms, integration may be numerically unstable. As a result, the computational

time saved by reducing the size of the system of nonlinear equations can be lost in small time stepping to solve

saturations and could lead to numerical instabilities, or in some cases, to non-convergence. The “fully-implicit”

approach solves the same equations as the IMPES method, except that it treats pressure and saturation variables

implicitly. Thus, the “fully-implicit” method is unconditionally stable. One could refer to Cao [17] to have a large

overview of the different formulations.

Given the sequential nature of OpenFOAM®, we have adopted the IMPES method to develop a dedicated

toolbox for multiphase flow in porous media. This package, called porousMultiphaseFoam, includes two solvers

impesFoam and anisoImpesFoam (for iso- and anisotropic porous medium, see Section 2.1), the most widely used

porous multiphase models for relative permeabilities and capillarities and a new boundary condition to impose

phase velocities.

The paper is organized as follows. In Section 2, we present the mathematical model and its implementation

in OpenFOAM®. Then in Section 3, we describe the content of the porousMultiphaseFoam package. Finally, in

Section 4 the toolbox is validated over several tests and the parallel performance is evaluated on a cluster.

2. Mathematical model

2.1. Mass-momentum conservation equations

When considering porous medium at the macro-scale, the flow is governed by volume averaged equations. Each

computational cell contains both solid and void space (or pore-space) which is represented at the macro-scale as

the porosity

ε =
Vvoid
Vcell

, (1)

where Vvoid is the volume occupied by the void space and Vcell the volume of the cell. To deal with multiphase

flow, we have to introduce the notion of saturation Si defining the filling rate of the phase i within the pore-space
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of a computational cell

Si =
Vi
Vvoid

, (2)

where Vi represents the volume occupied by the i -phase within the computational cell. From their definitions,

saturations vary in the range [0; 1]. In this work, we study the flow of a non-wetting phase a and wetting phase b

through the porous medium. Saturations satisfy the following relationship for fluid saturated media

Sa + Sb = 1. (3)

Considering an incompressible multiphase flow in a porous medium, the macro-scale mass balance equation for

each phase i reads:

ε
∂Si
∂t

+∇ ·Ui = qi, (4)

where Ui stands for the superficial velocity and qi is a source term, used for injection or extraction wells.

In the generalized Darcy’s model [13], the superficial velocity of each phase i is computed as

Ui = −Ki
µi
· (∇pi − ρig) , (5)

where the apparent permeability Ki is expressed as follows

Ki = Kkri(Sb). (6)

K is the permeability tensor of the porous medium and kri(Sb) is the relative permeability of the phase i, whose

value between 0 and 1 depends on the local saturation of the wetting phase Sb. This modeling suggests that the

presence of another fluid reduces the pore space available, and therefore, reduces the permeability. The two most

widely used relative permeability correlations (Brooks and Corey [18], Van Genuchten [19]) are detailed in the

models’ presentation (see Section 2.4) and implemented in the library. Two solvers are developed in the toolbox

depending on the porous medium considered, isotropic or anisotropic. In the numerical validation, the porous

medium is considered as isotropic which means that the tensor K can be replaced by a scalar K. Note that in

both cases the permeability field can be heterogeneous, i.e. whose value vary in space (the permeability is defined



2.2 The IMPES method 6

as a tensor field K or a scalar field K). Both solvers are useful as the isotropic solver requires less memory and

computation time.

Due to capillary effects inside the porous medium, we do not have equality between averaged pressure fields of

each phase. In classical multiphase porous medium approach, we generally define a macro-scale capillary pressure

pc depending on the saturation Sb [20]

pc(Sb) = pa − pb.

The pc values depending on the considered flow and porous medium properties are usually obtained experimen-

tally and then correlated on a capillary pressure model. The three most widely used capillary pressure correlations

(Brooks and Corey [18], Van Genuchten [19] and linear model) are detailed in section 2.5 and implemented in the

library. The capillary pressure correlation eliminates an unknown of the system and the mass conservation equations

read :

−ε∂Sb
∂t

+∇ ·
(
−Kkra (Sb)

µa
(∇pa − ρag)

)
= qa, (7)

ε
∂Sb
∂t

+∇ ·
(
−Kkrb (Sb)

µb
(∇pa − ρbg −∇pc(Sb))

)
= qb, (8)

with pa and Sb the system variables.

2.2. The IMPES method

The system described by the mass conservation equations 7 and 8 has strong non-linearities due to relative

permeabilities and capillary pressure correlations. Then, the resolution of the coupled system requires the use of

non-linear solver (Newton-Raphson method for example) and consequently involves substantial computation time.

As explained in the introduction, the IMPES algorithm used in this work and proposed first by Sheldon et al. [21]

is an alternative method consisting in a segregated resolution of the coupled equations. This method needs a new

model formulation detailed below.
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2.2.1. Model formulation

The mass conservation equations are reformulated into a pressure-saturation system by summing equations 7

and 8. The system then reads:

∇ ·
(
−Kkra (Sb)

µa
(∇pa − ρag)

)
+∇ ·

(
−Kkrb (Sb)

µb
(∇pa − ρbg −∇pc(Sb))

)
= qa + qb, (9)

ε
∂Sb
∂t

+∇ ·Ub = qb. (10)

The principle of this approach is to solve implicitly the global mass conservation, i.e. the pressure equation (9),

while the saturation equation (10) is explicitly solved. The detailed algorithm as implemented in the toolbox is

presented in Section 2.2.4.

2.2.2. Implemented formulation

To simplify the formulation, we define phase mobility Mi and gravitational contribution Li as follows:

Mi =
Kkri (Sw)

µi
, (11)

Li =
Kkri (Sw)

µi
ρi. (12)

Even if in the generalized Darcy’s law the relation Li = ρiMi is satisfied, we have found it convenient to separate

each contribution. Actually, it must be noted that more complex models involving viscous resistance terms between

phases for instance ([22, 23]) could be written using this generic formulation. Therefore, the same solver basis could

be used for further investigations with more sophisticated multiphase flow models.

Moreover, assuming that the capillary pressure only depends on saturation, the capillary term ∇pc can be

reformulated as

∇pc =
∂pc
∂Sb
∇Sb, (13)
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which allows to express the pressure equation (9) as a Poisson-type equation

∇ · ((Ma +Mb)∇pa) = −∇ ·
(

(La + Lb)g −Mb
∂pc
∂Sb
∇Sb

)
+ qa + qb, (14)

and the saturation equation as

ε
∂Sb
∂t

+∇ ·
(
−Mb∇pa + Lbg +Mb

∂pc
∂Sb
∇Sb

)
= qb. (15)

To improve code readability, three fluxes depending on different contributions (pressure gradient, gravity and

capillary pressure) are defined on each face of the computational grid:

φp = (Ma,c→f +Mb,c→f )∇pa · Sf , (16)

φg = (La,c→f + Lb,c→f )g · Sf , (17)

φpc = Mb,c→f

(
∂pc
∂Sb
∇Sb

)
c→f
· Sf , (18)

where the operator c → f indicates that face-centered values are interpolated from cell-centered value using a

numerical scheme detailed in Section 2.2.5. The global flux is computed as follows

φ = φp + φg + φpc , (19)

and the flux of phase b can be expressed

φb =
Mb,c→f

Ma,c→f +Mb,c→f
φp +

Lb,c→f
La,c→f + Lb,c→f

φg + φpc . (20)

2.2.3. Time-step limitations

To determine the time step for pressure equation, two conditions can be used in the provided solvers. The

first limitation is directly inherited from the classical OpenFOAM® multiphase solvers [6, 24] and is related to the
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Courant number Co, defined for the incompressible phase i

Coi = max∀cell

(
0.5

∑m
f=0 |φi|
Vcell

)
∆t, (21)

with m the number of neighbour faces f to the considered cell. The coefficient for time-step change is then

expressed

c∆t =
Cofixed

max (Coa, Cob)
. (22)

To avoid sudden and too large increases of the time-step which could lead to numerical instabilities, we define

the time-step of pressure equation (9) as follows

∆t∗p = min (min (c∆t, 1 + 0.1c∆t) , 1.2) ∆tlast, (23)

that limits to a maximum increase of 20%. Several tests show that it is necessary to impose Cofixed 5 0.1 to ensure

stability to the numerical simulations.

The second possible limitations for pressure equation the most commonly used in the IMPES method is the

CFL condition discussed by various authors [25, 26, 27]. It has been implemented in the provided toolbox and is

defined as follows

CFL = max∀cell

 ∆t

εVcell

2
∂pc
∂Sb

MaMb

K (Ma +Mb)

m∑
f=0

Tf +
∂Fb
∂Sb

m∑
f=0

φ

 , (24)

where Fb is the fractional flow

Fb =

krb
µb

kra
µa

+ krb
µb

, (25)

and Tf the transmitivity of the face f

Tf =
Kf ||Sf ||

∆xf
, (26)

where ∆xf is the distance between the centers of two neighboring cells. The coefficient for time-step change,

used in equation 23, is then expressed

c∆t =
Cmax
CFL

, (27)

with Cmax 6 1. Note that to ensure stability for the various test cases provided in the toolbox, Cmax is set to
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0.75.

The stability for both conditions, CFL or Co, is not ensured if source/sink term are present since they are not

take into account in these formulations. Moreover, if we consider further code developments in the conservation

equations, stability will probably not be ensured. In anticipation of these potential changes, we added a limitation

related to an user-defined maximal variation of saturation ∆Sb,max. Then, the variation of Sb between two time

steps should satisfy

∆Sb,n→n+1 ≤ ∆Sb,max, (28)

which can be reformulated as

∆t∗Sb
= min

 Vc∆Sb,max

ε
(
−
∑m
f=0 Ub · Sf + Vcqb

)
 . (29)

Then, the global time-step for the next iteration is given by

∆tn = min
(
∆t∗Sb

,∆t∗p
)
. (30)

2.2.4. Algorithm

1. ∆tn+1 is computed from the two conditions (Co or CFL and ∆Sb,max).

2. Saturation Sn+1
b is explicitly computed using the last known flux field φnb

ε
Sn+1
b − Snb
∆tn+1

+∇ · φnb = qb. (31)

3. Properties depending on the saturation (Mn+1
a , Mn+1

b , Ln+1
a , Ln+1

b and
(
∂pc
∂Sb
∇Sb

)n+1

) and related fluxes

(φn+1
g and φn+1

pc ) are updated.

4. Pressure field pn+1 is implicitly computed solving the pressure equation

−∇ ·
(
Mn+1
a,c→f +Mn+1

b,c→f

)
∇pn+1 +∇ · φn+1

g +∇ · φn+1
pc = qa + qb. (32)

5. Then φn+1
p and, therefore, φn+1 and φn+1

b can be updated for the next time step.
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2.2.5. Numerical schemes

As the saturation has great influence on relative permeabilities and capillary pressure, it is necessary to use

numerical schemes suitable to ensure robustness and stability to the segregated solver. In the provided solver

impesFoam, each field (kri, K and ∂pc
∂Sb

) has a user-defined interpolation scheme that can be modified in the simulation

configuration files. In the following numerical validation of the solver (section 4), we use the classical numerical

schemes of the IMPES method which are :

• Relative permeability kri : first order upwind scheme for stability in the presence of a saturation front.

• Intrinsic permeability K : harmonic average for high heterogeneities.

• Derivative of the capillary pressure ∂pc∂Sb
: linear interpolation.

We should note that the generic implementation of interpolated field in the impesFoam solver allows the use of all

the numerical schemes proposed by OpenFOAM® (high order, TVD, NVD, etc. [6, 7, 24]).

2.3. Wellbore models

In this work, we do not focus on the wellbore modelling in porous media which is not trivial and has been

discussed by several authors [14, 28]. We set up a simple structure in the software to allow the subsequent devel-

opment of more complex models. For that, we consider constant injection and extraction flow rates of wellbores

in the developed solver. Two mask functions, defined in the domain, are used to set up the positions of injection

and extraction points (1 indicates the presence of a wellbore, 0 the absence). The user-defined global flow rate

is equally divided between all the computational cells occupied by the wellbores, depending on their volume. We

consider that wellbores inject wetting phase and extract the two phases, depending on the mobility. Under these

assumptions, the source-sink terms for each phase can be expressed as:

qa = − Ma

Ma +Mb
Qextraction, (33)

qb = Qinjection −
Mb

Ma +Mb
Qextraction. (34)



2.4 Relative permeability models 12

2.4. Relative permeability models

Two relative permeability models are provided in the developed library. Both models involve the notion of

effective saturation, which is a normalized saturation of the wetting phase. The effective saturation reads

Sb,eff =
Sb − Sb,irr

1− Sa,irr − Sb,irr
, (35)

where Sa,irr and Sb,irr are the user-defined irreducible (minimal) saturations of the phases a and b respectively..

Both correlations depend on the effective saturation Sb,eff , the power coefficient m, and the maximal relative

permeabilities, kra,max and krb,max (set to 1 if not specified by the user).

Brooks and Corey Model [18].

kra (Sb,eff ) = kra,max (1− Sb,eff )
m

(36)

krb (Sb,eff ) = krb,maxS
m
b,eff (37)

Van Genuchten Model [19].

kra (Sb,eff ) = kra,max (1− Sb,eff )
1
2

(
1− (Sb,eff )

1
m

)2m

(38)

krb (Sb,eff ) = krb,maxS
1
2

b,eff

(
1−

(
1− S

1
m

b,eff

)m)2

(39)

2.5. The capillary pressure models

As for the relative permeability models, the capillary pressure correlations are based on the notion of effective

saturation. However, the macro-scale capillary pressure tends to infinity when saturation Sb tends to Sb,irr (and its

derivativewhen Sb tends to Sb,max in the Van Genuchten model). To accept irreducible and maximal saturations

in numerical simulations, we define the effective saturation for capillary pressure Sb,pc as follows

Sb,pc =
Sb − Spc,irr

Spc,max − Spc,irr
, (40)

where the -minimal Spc,irr is a user-defined parameter that should satisfy

Spc,irr < Sb,irr. (41)
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For the Van Genuchten model, the maximal saturation Spc,max should satisfy

Spc,max > Sb,max. (42)

Brooks and Corey Model [18]. The correlation for capillary pressure reads

pc (Sb,pc) = pc,0S
−α
b,pc

, (43)

where pc,0 is the entry capillary pressure and 1
α the pore-size distribution index. Deriving the equation (43),

the capillary term in the pressure (14) and saturation (15) equations can be expressed

∂pc
∂Sb,pc

(Sb,pc) = − αpc,0
Spc,max − Spc,irr

S−αb,pc . (44)

Van Genuchten Model [19]. The correlation for capillary pressure reads

pc (Sb,pc) = pc,0

(
(Sb,pc)

− 1
m − 1

) 1
n

, (45)

where pc,0 is the entry capillary pressure and m the Van Genuchten coefficient. The coefficient n is generally

correlated with m with the following relationship:

1

n
= 1−m. (46)

In the provided toolbox, this relationship is used to compute the n coefficient when it is not explicitly defined.

Deriving the equation (45), the capillary term in the pressure (14) and saturation (15) equations can be expressed

as

∂pc
∂Sb,pc

(Sb,pc) = −1−m
m

pc,0
Spc,max − Spc,irr

(
(Sb,pc)

− 1
m − 1

)−m
(Sb,pc)

− 1+m
m . (47)

Linear Model . The linear model is also available with

pc (Sb,pc) = pc,0 + (1− Sb,pc) (pc,max − pc,0) , (48)
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where pc,0 and pc,max respectively the minimal and maximal capillary pressure. The capillary term in pressure

and saturation equations is then given as follows

∂pc
∂Sb,pc

(Sb,pc) = − (pc,max − pc,0) . (49)

2.6. “Darcy velocity” boundary condition

In the IMPES method, solving the pressure equation implies some limitations in terms of boundary conditions.

For example, it is not straightforward to impose phase velocities on boundaries. To make it possible in the impesFoam

solver, we developed a suitable Neumann boundary condition (called darcyGradPressure in the toolbox) for the

pressure field. Assuming fixed phase velocities on the considered boundary, the total velocity can be expressed

Ufixed = Ua,fixed + Ub,fixed = − (Ma +Mb)∇pa + (La + Lb)g +Mb
∂pc
∂Sb
∇Sb. (50)

Then, we can expressed the Neumann boundary condition on the pressure field

n.∇pa = −n.
[
(Ma +Mb)

−1

(
Ufixed − (La + Lb)g −Mb

∂pc
∂Sb
∇Sb

)]
, (51)

where n denotes the normal to the face boundary. A similar boundary condition called darcyGradPressureAniso

is defined for the anisoImpesFoam solver. Note that in that case, the tensor K needs to be invertible.

3. Description of software components

The global organization of the porousMultiphaseFoam toolbox is depicted in figure 1.

The toolbox is divided in 4 parts: porousModels, porousBoundaryConditions, impesFoam and tutorials.

3.1. porousModels

This block compiles the libporousModels.so library containing the relative permeability, capillary pressure

and phase models (see sections 2.4 and 2.5). Model parameters needed by the classes should be defined in the usual

configuration file transportProperties. An example of a configuration file for a Brooks and Corey correlation is

presented in Figure 2.
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porousMultiphaseFoam

porousBoundaryConditions porousModels

relativePermeabilityModels

capillarityModels

phaseModels

darcyGradPressure

darcyGradPressureAniso

impesFoamtutorials

BuckleyLeverett

capillaryValidation

injectionExtraction

anisoImpesFoam

Figure 1: Structure of the OpenFOAM® porous multiphase toolbox.

phasea{
rho rho [1 -3 0 0 0 0 0] 1e0;

mu mu [1 -1 -1 0 0 0 0] 1.76e-5;

}

phaseb{
rho rho [1 -3 0 0 0 0 0] 1e3;

mu mu [1 -1 -1 0 0 0 0] 1e-3;

}

relativePermeabilityModel BrooksAndCorey;

capillarityModel BrooksAndCorey;

BrooksAndCoreyCoeffs{
m 3;

Sminpc Sminpc [0 0 0 0 0 0 0] 0;

Smaxpc Smaxpc [0 0 0 0 0 0 0] 1;

pc0 pc0 [1 -1 -2 0 0 0 0] 5;

alpha 0.2;

}

Figure 2: Example of a transportProperties file.
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dimensions [1 -1 -2 0 0 0 0];

internalField uniform 0;

boundaryField {

boundaryExample{
type darcyGradPressure;

}

}

dimensions [1 -1 0 0 0 0 0];

internalField uniform 0;

boundaryField {

boundaryExample{
type fixedValue;

value uniform (1e-5 0 0);

}

}

Figure 3: Example of pressure p file (left) and velocity Ub file (right) for darcyGradPressure boundary condition.

3.2. porousBoundaryConditions

This block compiles libporousBoundaryConditions.so library containing two new boundary conditions as

detailed in section 2.6 and derived from the OpenFOAM® basic boundary condition fixedGradientFvPatchField.

The boundary condition is called in the pressure file p as depicted in figure 3(left) while the velocities have usual

Dirichlet boundary conditions (see an example of Ub file in Figure 3(right)).

3.3. impesFoam

The solver impesFoam solves equations described in the section 2.2 considering isotropic porous medium (per-

meability K is a scalar field). This solver is used in the numerical validation of the developed library. It can be

used as a development basis to integrate other features of multiphase flow in isotropic porous media.

3.4. anisoImpesFoam

The solver anisoImpesFoam solves same equations described as the impesFoam except that the intrinsic perme-

ability K is a tensor field. Two injection cases are available in the provided toolbox. It can be used as a development

basis to integrate other features of multiphase flows in anisotropic porous media.

3.5. tutorials

This block contains the validation tests presented in the section 4: Buckley-Leverett and capillary validation.

An injection/extraction test case is also provided to ensure the proper implementation of the source/sink terms.
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(a)

fluid ρ (kg.m-3) µ (Pa.s)
air 1 1.76.10−5

water 1000 1.10−3

oil 800 1.10−1

(b)

model m
Brooks and Corey [18] 3

Van Genuchten [19] 0.5
(c)

variable value
pa tolerance 10−12

CFL 0.75
∆Sb,max 0.01

Table 1: Parameters for: (a) fluid, (b) model and (c) algorithm.

4. Numerical validations

The toolbox is validated using the solver impesFoam, i.e. the isotropic version of the IMPES method. However,

numerical methods are the same for anisotropic solver and two injection test cases are provided in the tutorials

to show an example of the use of the anisotropic solver anisoImpesFoam.

4.1. Buckley-Leverett

We consider the simplified case of Buckley-Leverett, i.e. a two-phase flow in a 1D domain (length L = 1 m ,

porosity ε = 0.5, intrinsic permeability K = 1 × 10−11 m2, 400 computation cells) without capillary effects. This

simplified case allows to develop a semi-analytical solution to get the shock saturation (saturation at the front), the

front velocity and the saturation profile behind the front [29].

In the following tests, three fluids are considered (air, water and oil) whose properties are summarized in Table

1. The domain is initially fully saturated with the non-wetting fluid (air or oil depending in this case, Sb = Sb,irr

and Sa = Sa,max, ) and we inject the wetting fluid (water) with a fixed constant velocity Ub = 1× 10−5 m.s−1.

The numerical validation is performed for the two relative permeabilities models, considering a water-air system

for the Brooks and Corey model and a water-oil system for the Van Genuchten model. Model and algorithm

parameters are summarized in Table 1. The comparison between numerical and semi-analytical results is shown

in Figure 4. A good agreement is found with some minor numerical diffusion mainly due to the “upwind” scheme

used for the relative permeability computation.

The case of the gravity regime is also studied, considering vertical injection of water in a air-saturated system

for both models. Except the gravity contribution, the simulation parameters remain unchanged. In the gravity

regime, i.e. when the flow rate injection is low, the front saturation is given by solving

Ub −
Kkrb(Sb,front)

µb
ρbgy = 0, (52)
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Figure 4: Saturation profiles for the Brooks and Corey model (left) and the Van Genuchten model (right). Dash lines are theoretical
saturation profiles. .
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Figure 5: Saturation profiles in the gravity regime for the Brooks and Corey model (left) and the Van Genuchten model (right). Dash
lines are theoretical saturation profiles. .

which gives Sb,front = 0.467 for Brooks and Corey model and Sb,front = 0.754 for the Van Genuchten model.

The computed front velocities are respectively 4, 28 × 10−5 and 2, 65 × 10−5 m.s-1. The good agreement between

numerical and analytical results is shown in Figure 5.

4.2. Capillary-gravity equilibrium

We now consider a two-phase flow (air/water), with capillary pressure effects in a vertical 1D domain, similar

to the previous section (H = 1 m). The bottom boundary condition is now a fixed wall (“Darcy velocity” boundary

condition with Ua = Ub = 0m/s) and the top boundary condition is a Dirichlet condition with fixed reference

pressure p = 0 Pa and irreducible saturation Sb = Sb,irr. We initialize the lower half of the domain with Sb = 0.5.

Then we simulate the flow over a long period (2 × 106 seconds) to allow the establishment of a saturation profile

along the vertical axis. When the stationary state is reached, we have

Ua = Ub = 0, (53)
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model pc,0 m α
Brooks and Corey [18] 1000 0.5

Van Genuchten [19] 100 0.5

Table 2: Model parameters for capillary validation.

and then we can write:

∂pa
∂y

= ρagy, (54)

∂pc
∂y

= ρbgy −
∂pa
∂y

. (55)

The capillary pressure gradient can be therefore simply expressed in term of gravity contribution

∂pc
∂y

= (ρb − ρa)gy. (56)

Therefore, the final saturation field should satisfy

∂Sb
∂y

=
(ρb − ρa) gy
∂pc
∂Sb

(Sb)
, (57)

where ∂pc∂Sb
(Sb) follows a given correlation described in section 2.5. Algorithm parameters are identical to the

previous test case (cf Table 1) and the model parameters are summarized in Table 2.

Saturation profiles at the capillary-gravity equilibrium are presented in the Figure 6(left). The comparison

between theoretical and numerical evaluations of saturation gradients (depending on the saturation) validates the

numerical implementation of the presented models (see Figure6).

4.3. Performance test: viscous fingering in a heavy oil reservoir

We now consider a water injection (Ub = 1×10−4 m.s−1) in a horizontal oil saturated system (see fluid properties

on Table 1). The size of the reservoir is 1 × 0, 4 m2 (1, 6 × 106 computation cells with a 2000 × 800 mesh).

The permeability of the two-dimensional domain is heterogeneous by blocks with a value between 1 × 10−13 and

4×10−13 m2 (see Figure 7). The Van Genuchten model is used for relative permeability and capillary pressure with

m = 0, 5 and pc,0 = 5 Pa.
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Figure 7: Heavy oil reservoir permeability field and boundary conditions.
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Figure 8: Viscous fingering in an heavy oil reservoir (Water saturation field Sb).

In this condition, we observe the emergence of multiple instabilities in the saturation front area (see Figure 8

a). The development of these instabilities leads to a so called “viscous fingering” (see Figure 8 b), a phenomenon

due to the important viscosity ratio between the two fluids [30].

The viscous fingering presents an important challenge to oil industry and needs to be accurately understood

and modeled because theses instabilities decrease the efficiency of oil recovery processes. We do not focus in

this study on these phenomena characterization and the reader interested could refer to previous experimental

[31, 30, 32, 33, 34] and numerical studies [35, 36, 37, 38]. Actually, the number of “viscous fingers” depends on the

reservoir properties but also on numerical parameters such as grid refinement and algorithm tolerance. Therefore,

the complete characterization would require a thorough study that is not in the scope of this paper. However, it

is an interesting illustration of the possibilities of the solver by simulating a complex multiphase flow where the

saturation front occupies almost the whole domain. A unique configuration is tested and used to evaluate the

parallel performance of our solver.

In OpenFOAM®, the parallel algorithm is based on the domain decomposition method. Before the simulation,
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the whole domain is decomposed in n small domains, n being the number of computational cores used for the

simulation. Then, each core solves a smaller linear system and information exchanges at boundaries between cores

are done using the Message Passing Interface (MPI) communications protocol. Several decomposition methods are

available in OpenFOAM® (simple, scotch, manual, etc.) and can be used independently of the considered solver.

We use in our simulations the simple method which decomposes the domain in nx × ny × nz equal parts, where ni

are user-defined values. The pressure equation (14) is solved with the standard preconditioned conjugate gradient

(PCG) solver with a fixed tolerance of 10−6.

The “viscous fingering” phenomena is simulated on the Hyperion cluster which consists of 368 computation

nodes of 2 quad-core Nehalem EX processors at 2.8 GHz with 8 MB of cache per processor. The MPI version

installed on the cluster is the MPT-2.04, a specific version of MPI optimized for SGI clusters. Simulations were

performed from 16 (the reference) to 1024 cores. The cluster was charged during the simulations and allocates

randomly computation nodes, whose 8 cores are fully dedicated to the requested task. The total simulation, i.e.

4000 s of physical time, takes around 700 hours of CPU time. The speedup σ for a simulation with n cores is

computed as follows:

σn =
T16

Tn
(58)

where Tn is the computation time for n cores. The parallel efficiency εn is defined:

εn =
16

n
σn (59)

The results in term of speedup are presented in Figure 9. The numerical results show a super linear speedup

until 256 cores (ε256 ≈ 1, 58). This is not an unusual behavior since it has already been observed on standard

OpenFOAM applications, see for example the 3D cavity flow simulations performed by the IT Center For Science

[39]. In that study, Navier-Stokes equations are solved on 10 millions computation cells and the parallel efficiency

can reach ε ≈ 1, 6 . In our case, we assume that the explicit part of the resolution (saturation equation and the

flow properties computation at each time step) can partly explain this observation. Indeed, increasing the number

of processors decreases the number of computation cells and then RAM memory necessary for each processor. As

the explicit treatment need low computation but high access memory (RAM and cache), this could lead to a high

parallel efficiency superior to 1. This effect decreases above 256 cores, because partial linear systems become smaller
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Figure 9: Log-log representation of the speedup with the impesFoam solver (reference is 16 cores and linear solver is PCG)

and the information exchange between cores takes relatively more computation time. A linear scaling is reached for

512 cores (ε512 ≈ 0, 97). Then, the parallel efficiency for 1024 cores is low (ε1024 ≈ 0, 59) because the linear system

for each core become very small (only 1560 cells per core).

Parallel efficiency has also been tested using the OpenFOAM® multi-grid solver (GAMG) on shorter simulations

(tstart = 1000 to tend = 1010 s) from 16 to 512 cores. For the reference case (16 cores), the GAMG solver reduces the

global computational time of the simulation from 679 s (PCG) to 436 s (GAMG). The GAMG solver exhibits also

a super linear speed-up until 256 cores but lower than the PCG solver (respectively ε256 ≈ 1, 09 and ε256 ≈ 1, 58)

. This results in a similar computational time for both solvers (T256 ≈ 26 s) when using 256 processors and slower

simulations above (T512 ≈ 19 s for GAMG and T512 ≈ 14 s for PCG). Note that the optimization of the GAMG

solver parametrization may improve global efficiency and should require a thorough study.

5. Conclusion

A toolbox for the simulation of multiphase flow in porous media has been developed using the standards of

OpenFOAM®. This toolbox includes libraries for porous models (relative permeability, capillary pressure and

phase model) and a specific porous boundary condition. A classical IMPES solver has been developed to validate

the provided models by comparison with analytical solutions. A study on the parallel efficiency (up to 1024 cores)

has also been performed on a complex multiphase flow. The presented solver shows a satisfactory speedup, provided

to solve a sufficiently large problem. The provided solver can serve as a basis to develop other features, such as new

multiphase or improved wellbore models. Moreover, the easily modifiable nature of the OpenFOAM® platform

can be useful to test, for example, new numerical schemes or solution methods.
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