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Abstract

The IMplicit Pressure Explicit Saturation (IMPES) method is a prevalent way to simulate multiphase flows
in porous media. The numerical stability of this sequential method implies limitations on time step which may
depend on the flow regime studied. In this note, three stability criteria related to the IMPES method, that differ
in their construction on the observed variables, are compared on homogeneous and heterogeneous configurations
for different two-phase flow regimes (viscous/capillary/gravitational). This highlights there is no single optimal
criterion always ensuring stability and efficiency. For capillary dominated flows, the Todd’s condition is the most
efficient while the standard Coat’s condition should be preferred for viscous flows. When gravity effects are present,
the Coat’s condition must be restricted but remains more efficient than the Todd’s condition.
L’IMplicit Pressure Explicit Saturation method (IMPES) est l’une des principales mthodes pour traiter les cas
d’coulements multiphasiques en milieux poreux. La stabilit numrique de cette mthode squentielle implique des
contraintes diffrentes sur le pas de temps selon le rgime d’coulement tudi. Dans cette note, les trois princi-
paux critres de stabilit lis l’IMPES sont tests sur des milieux homognes et htrognes pour diffrents rgimes
(visqueux/capillaire/gravitaire). Cette tude montre qu’aucun critre optimal, runissant stabilit et efficacit, ne se
dgage. Pour les coulements capillaires, la condition de Todd est la plus efficace tandis que la condition standard
de Coats est prfrable pour les coulements visqueux. Quand les effets gravitaires sont pris en compte, la condition
de Coats doit tre restreinte mais demeure plus efficace que la condition de Todd.

1. Introduction

Among the possible numerical methods used to simulate two-phase flow in porous media [1,2,3], the
IMplicit Pressure Explicit Saturation (IMPES) method remains in use today [4,5]. This sequential al-
gorithm, originally proposed by Sheldon [6], has the advantage to substantially reduce the size of linear
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systems to solve, compared to a fully implicit method. In return, the method is limited by important
numerical stability restrictions on the time step size. Hybrid methods, Adaptive Implicit Methods (AIM),
have also been proposed and treat implicitly unknowns in regions with high throughput ratio[24].

The numerical instabilities are due to the non-linear effects involved in two-phase flow in porous me-
dia and mainly related to capillary pressure and relative permeability laws. The explicit resolution of
saturation requires the linearization of capillary and permeability laws which could lead to numerical
instability. This can lead to erroneous calculations of the saturation field and, in the worst cases, to the
end of the simulation (the computed saturation is out of the limits). The various laws and their complex-
ity make stability even harder to predict and, therefore, different stability criteria have been proposed
and studied. Todd [7] has first derived a condition based on averaged spatial and temporal saturation
variation, which provides an increasing/decreasing factor for the time step. Coats [8], through a proper
Von Neumann analysis, has derived a CFL criteria based on mobility related terms, fluxes and capillary
pressure. One can also use the classical CFL [9] condition to ensure stability. Other stability studies have
been conducted focusing on upstream scheme [25], on switching criteria for AIM [24,27] or on extension
to compositional and black-oil models [26]. Even if the Coats’ stability criterion is commonly used, it may
be very restrictive in certain circumstances and is therefore not necessarily the optimum choice. To our
knowledge, there is no study in the literature comparing these different stability criteria to highlight their
effectiveness for different porous media viscous flow regimes involving, or not, capillary and gravitational
effects.
This need for numerical stability is all the more important as two-phase flow in porous media are

often subject to physical instabilities. This class of instabilities can be caused by various configurations
such as counter current flows and layered flows or by properties of the studied system (mobility ratio,
viscosity ratio, permeability distribution). The most commonly known and studied instability is the
viscous fingering phenomenon [10]. When one is interested in simulating this kind of physical instability,
the numerical stability should be ensured to avoid the perturbation of the system by a numerical artifact.
In a recent work [11], the IMPES method has been implemented and developed in the open-source

framework OpenFOAM [12,13]. This open-source implementation has been successfully employed in var-
ious fields, such as two-phase flow in structured bed packing [14] and waste management [15].

The scope of the paper is the performance benchmark of existing criteria taken from the literature. A
methodology is set up to compare their efficiency in terms of computational cost (number of linear solver
iterations) for various cases. This study has been designed for helping IMPES users that struggle with
stability issues in choosing the most suited criteria for their simulation. Its ambition is not to develop a
new criteria but to gather user experiences on different configuration with different criteria. We proposed
to cross-compare Todd, Coats and classical Courant-Friedrichs-Lewy criteria listed above, for different
flow regimes (viscous/capillary/gravitational) and for homogeneous and heterogeneous permeability fields
without singularities (e.g., no wellbore model).
This note is organized in two parts. In the first one, two-phase flow equations for porous media are

described, detailing the IMPES algorithm and presenting the three stability numbers investigated. We
introduce mathematical formulation of the different criteria, stating which phenomena are included in
the theoretical form. In the second part, numerical experiments are performed to explore the different
stability conditions on three classical configurations, and define their efficiency.
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2. Two-phase flow and stability numbers

2.1. Mathematical model

Two-phase flows under investigation are assumed incompressible, viscous and isothermal. The wetting
and non-wetting phases are respectively denoted w and n. The mass conservation equation for each phase
reads

φ
∂Sw

∂t
+∇ · uw = qw,

−φ
∂Sw

∂t
+∇ · un = qn, (1)

with the obvious relationship

Sw + Sn = 1. (2)

In these equations, Sα refers to the saturation, φ is the porosity, qα is the mass source/sink term and uα

denotes the superficial velocity for each phase α. The latter are slow enough to be modeled by generalized
Darcy’s laws [16],

uw = −K·λw (∇pn − ρwg −∇pc) ,

un = −K · λn (∇pn − ρng) , (3)

where K is the permeability tensor intrinsic to the porous material, ρα is the fluid density and g the
gravitational acceleration. The capillary pressure, pc, i.e. the pressure difference between both phases
depends on the saturation [17] and reads,

pc (Sw) = pn − pw. (4)

The mobility λα is defined as

λα =

(

kr,α(Sw)

µα

)

α=w,n

, (5)

where µα is the fluid viscosity and kr,α is the relative permeability function.
Many models exist in the literature to represent the capillary pressure and the relative permeabilities

according to the saturation [17,18,19,20,21]. In the present study, the well-established Brooks and Corey
model [19] is used. With such model, capillary pressure, pc, and relative permeabilities, kr,α, read

pc (Sw) = pc,0 S
− 1

m

e

kr,n (Sw) = kr,nmax
(1− Se)

3m+2

m (6)

kr,w (Sw) = kr,wmax
Se

3m+2

m .

where pc,0, kr,nmax
and kr,wmax

are model parameters and the pore-size index, m, is a characteristic
number of the porous medium considered: small for large range pore-size distribution, large for relatively
uniform pore-size distribution. The reduced saturation,

Se =

(

Sw − Sw,irr

1− Sw,irr − Sn,res

)

, (7)
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represents that amount of wetting phase that can flow. It depends on the irreducible wetting saturation,
Sw,irr and the residual non-wetting saturation, Sn,res.

2.2. IMPES algorithm

The chosen unknowns for the numerical implementation are the pressure of the non-wetting phase and
the saturation of the wetting phase (pn, Sw). The saturation Sw is governed by the wetting phase mass
conservation Eq. (1) and the pressure pn satisfies the global mass conservation,

∇ · (−K · λt∇pn)−∇ · (K ·Ψ(ρw − ρn) · g −K ·Ψp′c∇Sw) = qt, (8)

where λt = λw + λn is the total mobility, qt = qw + qn is the total sink/source term and Ψ = 2λwλn

λw+λn

is
the harmonic average of mobilities. The first derivative of capillary pressure with respect to the wetting
phase saturation Sw is introduced as |p′c|.
The IMPES solution algorithm consists in solving implicitly the pressure equation (8) and explicitly

the saturation equation (1). The details of the implemented algorithm can be found in a previous work
[11]. In the following simulations, a first order upwind interpolation is used for mobility related terms and
a backward Euler scheme is adopted for time discretization.
Linear solver used in the experiment is a conjugate gradient solver with a diagonal incomplete Cholesky

preconditioner. It is a commonly used pair when dealing with symmetric matrices. Generalized geometric-
algebraic multi-grid solver might be an appropriate alternative for solving this equation over large do-
mains. As cases treated in the next section remain simple in term of number of cells and considering that
solver efficiency is not in the scope of this work, the choice of such a preconditioner-solver pair is not
disadvantageous.

2.3. Stability criteria

In this section the three tested CFL conditions ensuring the stability of IMPES simulations are de-
scribed: namely the classic Courant number condition (Co), the Todd’s derived number condition (T )
and the Coats’ derived number condition (C). For each criterion, a time-step factor F , which gives the
increase or decrease in the time-step size during the simulation, is defined.

Classic Courant number condition (Co)
This condition limits the Courant number of each phase α, by a user defined value, Comax:

Co =
1

2
max

i,α







∑

faces⊂i

|qα,f |

Vi

∆t






< Comax i = 1, Ncells. (9)

This Courant number is a direct adaptation of the classical one extended to two-phase flows [9]. It
involves the sum of absolute values of fluxes in phase α through every faces of cell i (term

∑

faces⊂i

|qα,f |)

and the volume Vi of the cell i. It is designed to ensure stability of the hyperbolic saturation equation .
The time-step factor F is defined as:

F =
Comax

Co
. (10)
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Todd’s number condition (T)
The first stability criterion dedicated to the IMPES algorithm [7] has been derived taking into account

the discretized form of the pressure and saturation equations. It leads to a constraint on the time step,
split into two time-step restrictions, regarding if capillary pressure pc, or relative permeabilities kr, are
considered

∆t ≤ min
i

[∆tpc,i,∆tkr,i] i = 1, Ncells. (11)

Capillary restriction on time-step can be expressed as

∆tpc,i ≤
φVi

|p′c|
∑

faces⊂i

(TfΨ)
i = 1, Ncells. (12)

where Tf = (KA/∆x) is the transmissivity of face f , whose area is noted A and whose distance to
the cell center is noted ∆x. Harmonic interpolation of K is chosen for computing the transmissivity Tf .
Equation (12), reformulated as a CFL condition, reads :

CFLTodd,pc = ∆tpc,i

|p′c|
∑

faces⊂i

(TfΨ)

φVi

< CFLTodd,max, i = 1, Ncells. (13)

which introduces a user-defined upper limit CFLTodd,max.
Relative permeabilities restriction, formulated in terms of inter-cell fluxes, reads

∆tkr,i ≤
φVi

f ′
w,i

(

∑

faces⊂i

|qf |

) i = 1, Ncells, (14)

with f ′
w the derivative of the fractional flow fw = λw

λt

with respect to the saturation of the wetting phase
Sw and qf the total flux through the f face. In terms of spatial and temporal saturation variation, a time
step ratio can be used, with the 1/2 factor depending on the chosen spatial discretization scheme (e.g.
here 1-pt upwind in 1D):

T =
∆tn+1

kr

∆tnkr

=
1

2

1

Ncells

∑

i

|∆i,i+1Sw|

max
i

(|∆tSw|)
i = 1, Ncells. (15)

Here, the equation (15) defines directly a time step factor referred in the following as T number. The
symbol ∆i,i+1Sw stands for the difference between two neighbor cells and ∆tSw is the saturation difference
between n and n−1 time state. The time-step factor F includes both parts, capillary pressure and relative
permeability, and is defined as:

F = min(T,
CFLTodd,max

CFLTodd,pc

). (16)

Coats’ number condition (C)
More recently, starting from inequality (12) and (14) using Neumann’s stability analysis, a new stability

number C has been developed [8]:
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Figure 1. Time step evolution law.

C = max
f

[

∆t

φVi|f

(

λn

λtλw

|qw,f |λ
′
w −

λw

λtλn

|qn,f |λ
′
n

+(TfΨ)
(∣

∣p′c,f
∣

∣

))]

≤ Cmax f = 1, Nfaces, (17)

where Cmax is a user-defined limit. Vi|f and p′c,f are respectively the linear interpolated values of the
neighbor cell’s volume and derivative of capillary pressure with respect to wetting phase saturation Sw.
The C number includes all considered phenomena (gravity and capillarity) and their spatial variations to
better spot local effects that could results in instability. The time-step factor F is defined as:

F =
Cmax

C
. (18)

It can be noted that if capillary and gravity effects are neglected, Coats (C) and Todd (T ) conditions
reduce to the same theoretical stability restriction. This is in agreement with other analysis [24,26].
However, in practice, the Todd’s number is computed from saturation variations while Coat’s number
is computed from fluxes. This may results in large differences in terms of time-step computations as
observed in the Buckley-Leverett experiments.

2.4. Time-step increasing factor management

In order to improve stability and avoid large changes, the time step is computed as

∆tn+1 = min (min (F, 1 + 0.1F ) , 1.2)∆tn. (19)

where F is the timestep factor defined for each stability number (Courant, Coats or Todd). This
approach is inherited from classical OpenFOAM solvers [12] . It limits the maximal increase to 20 %, and
reduces the increase between ∼ 11 and 20 % as shown in Figure (1). Note that this heuristic management
mainly occurs at the beginning of the simulations when saturation and pressure gradients are important.
During simulations, the variation of stability numbers is small between time iterations and the upper
bound of 1.10 % is rarely reached.
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3. Numerical experiments

In order to highlight the differences between the above stability criteria, simulations on well-known test
cases are performed. We first consider a classical Buckley-Leverett experiment (viscous and gravitational
regimes), then a 1D capillary rise experiment (capillary regime) and finally the 2D heterogeneous case
(considering the three flow regimes) from [22]. Without other mentions, simulations are run with kr,wmax

=
1 and kr,nmax

= 1 . Saturation limits are set with Sw,irr = Sn,res = 0.001. Brooks and Corey’sm parameter
is equal to m = 5. To assess the efficiency of stability criteria, accumulated linear solver iterations, the
computational effort required, are plotted as a function of physical time of the simulated phenomenon.
Indeed, the sole time step size data cannot render if the resolution is more or less time consuming. Some
criterion can return a bigger time step which leads to harder to solve system for the linear solver. That
is why the accumulated sum of the linear solver iterations is chosen. It provides a better idea of whether
the system is fast or long to solve whatever the size of the time step is because linear solver iterations are
directly proportional to CPU-time needed to inverse the matrices.
Throughout the cases, ratio between viscous flux Φµ, gravitational flux Φg and capillary flux Φpc

is
given if relevant. The total flux Φt resulting from the pressure equation (8) is considered to be decomposed
as

Φt = Φµ +Φg +Φpc
, (20)

highlighting the competition of the different phenomena driving the flow.

3.1. Buckley-Leverett experiments

Wetting phase is injected at |uinj | = 10−5 m.s−1 in the same direction as gravity acceleration with
an absolute scalar permeability K = 10−11 m2. Gradient of capillary pressure is assumed to be null.
Depending on the regime, a semi-analytical solution can be calculated to predict the velocity and shape
of the saturation front. This test highlights the relative permeability contribution to instability. In the
gravitational case, the gravitational flux Φg is 20 times greater than the viscous flux Φµ. The gravitational
effects will set the front velocity.
Figures 2(a)-2(b) show the accumulated linear solver iterations necessary to reach the final physical

time and highlight that the T factor is clearly too restrictive for the Buckley-Leverett case and requires
between 10 and 50 times more iterations. Equation (15) gives too restrictive time steps for 1D cases as
mentioned in [7]. The criteria Co and C methods have similar time-steps (Figures 2(c)-2(d)) and involve
almost the same computation time. However, we should note that contrary to the C factor, the Comethod
is case-dependent in the setting of its upper bound Comax and therefore, several tests were necessary to
get the optimized value.

3.2. Capillary-gravity equilibrium experiment

In order to test the capillary pressure contribution for the different criteria, we perform simulations
on a 1D vertical domain, whose lower half is filled with water (viscosity µw = 10−3Pa · s and density
ρw = 1000 kg ·m−3). The upper half is filled with air (viscosity µw = 1.76 10−5Pa · s and density ρn =
1 kg ·m−3). The capillary pressure parameter, pc,0 = 1000Pa, has been tuned to balance gravity forces
for this set of parameters. At the beginning of the simulation, the flow is mainly capillary-dominated due
to high saturation gradients until the equilibrium state between capillary and gravity forces is reached.
In this configuration, T based method efficiency is close to the Co based method (1.2 times faster) while
the C method is 60 times slower with an upper bound Cmax = 1 (see Figure.(3)).
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(a) Gravitational regime.
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(b) Non-gravitational regime.
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Figure 2. Evolution of the accumulated linear solver iterations for one-dimensional Buckley-Leverett experiment using the

different stability criteria T , C and Co: (a,b) all stability criteria and (c,d) focusing C and Co criteria.
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Figure 3. Evolution of the accumulated linear solver iterations for the capillary rise configuration.

The maximum stable values of parameters Comax and Cmax for the tested cases and the related
maximum time-step size reached during the simulations are reported in Table 1. It can be noticed that
the Coats’ criteria still ensure a stable simulation with values above the standard value (Cmax = 1) as
observed in [8,28]. For gravitational Buckley-Leverett experiment, the saturation front is very sharp and
leads to very restrictive maximum allowed time-step of similar size with Co criteria. The same remark can
be derived from accumulated time steps on Figure 2(c). For capillary-gravity equilibrium simulation, even

8



Comax Cmax ∆tCo,max(s) ∆tC,max(s) ∆tT,max(s)

Non-gravitational Buckley-Leverett 0.15 1.19 37.49 65.25 0.18

Gravitational Buckley-Leverett 0.08 2.06 20 20.293 0.084

Capillary-gravity equilibrium 0.005 7.00 149.48 14.156 379.2

Table 1
Limits for Comax and Cmax parameters and maximum time-step allowed on Buckley-Leverett and Capillary rise cases.

though the maximal value of upper bound Cmax is very high, the allowed time step is very restrictive. In
such a configuration, Co and T criteria seem more appropriate.

3.3. SPE 10: 2D heterogeneous case

SPE 10th comparative solution project [22] proposed a two dimensional heterogeneous permeability
field more realistic than the academic cases previously used. The different stability numbers are tested
out in non-gravitational, gravitational and capillary regime. Phase densities and viscosities are given by
the authors (ρgas = 1 and ρoil = 700 kg.m-3, µgas = 10−5 and µoil = 10−3 Pa.s). Relative permeabilities
and capillary pressure follow a Brooks and Corey law with coefficient m = 5. The case is an injection-
production scenario: gas is injected at the left side of the domain, oil and gas are produced at the right
side. Without gravity (Figure 4, top) the gas injected pushes the oil towards the production wellbore,
while including gravity effects (Figure 4, middle), oil and gas segregate because of the density difference
and gas overlays oil present. Capillary effects taken into account with pc,0 = 0.1 bar, tend to smooth
saturation values. In order to have easily readable representation of the prescribed domain, aspect ratio
0.2:2 is adopted. The accuracy of the numerical results are ensured by considering L2-norm error with
Comax = 5 · 10−4 case as reference. The configurations tested present a maximal relative error below 0.5
%. Knowing that the discretization scheme used in 2D, the T prefactor should be set to 0.25. However,
gravitational case is more challenging regarding stability and T prefactor should be reduced in order to
ensure stability of the simulation as mentioned in [7]. In the gravitational case, the gravitational flux Φg

is 100 times greater than the viscous flux Φµ and in capillary dominated case Φpc
is 500 times greater

than Φµ.
The C and T methods lead to similar computation time in the non gravitational case (cf. Figure 5(a)),

while Co leads to simulation 2.2 times slower.
In the gravitational case, the criterion Co leads to the fastest resolution (reported on Figure 5(b)),

more than 2 times faster than C criteria. This case illustrates what has been observed before in [8,28]. C
number could be either uniformly distributed throughout the domain and reaches its limit value only in
one point (cf. Figure 6(a)) or has a more non uniform distribution with intermediate values and several
points at the maximum value (cf. Figure 6(b)). In the first case, the stability is critical and C provides
a good approximation of a suitable time step to keep the simulation stable. In the second configuration,
it is remarked that C is too restrictive and stability is still ensured for values beyond C = 1. Due to
this change in repartition, C requires almost 8 more linear solver iterations to solve the problem. The T
method behaves slightly better with a 1.75 times faster simulation.
Similarly to the one-dimensional test cases, the capillary-driven case using C number is the most

complex in term of stability and efficiency because it leads to unnecessary small time-steps. This is also
the case for Co driven simulations because it requires to impose very low maximum limit (here 10−2).
Regarding efficiency, T is the best criterion as previously observed (Figure 5(c)). Comparing the efficiency
for this configuration, T is 4.25 times faster than Co and 6 times faster than C.

In the case where both capillary and gravitational effects are present, the T and C criteria lead to
similar performance while the Co produces a twice slower simulation (see Figure 7).
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Figure 4. Gas saturation field 2D SPE 10 case for (top) non-gravitational, (middle) gravitational and (bottom) capillary

regime.
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(a) Non-gravitational regime.
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(b) Gravitational regime.
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(c) Capillary regime.

Figure 5. Evolution of the accumulated linear solver iterations for the SPE 10 2D.

(a) Time 149 days. (b) Time 172 days.

Figure 6. Uniform and non uniform C number distribution in gravitational regime.
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Figure 7. Evolution of the accumulated linear solver iterations for the SPE 10 2D in capillary-gravity regime.

Comax Cmax ∆tCo,max(s) ∆tC,max(s) ∆tT,max(s)

Non-gravitational 0.01 2.11 2445.3 27736 53290

Gravitational 0.01 0.56 2197 4925 7618

Capillary 0.01 3.63 2316 8583 49777

Capillary-gravity 0.003 0.36 667 1244 2512

Table 2
Limits for Comax and Cmax parameters and maximum time-step allowed on Buckley-Leverett and Capillary rise cases.

As for homogeneous porous medium, the maximum stable values of criteria C and Co are gathered in
Table 2. These results hightlight that Coats number C allows the use of time-step from 2 to 10 times
larger than those obtained with Co driven simulations. Non-gravitational cross-flow exhibits Cmax larger
than the similar Buckley-Leverett experiment (2.11 instead of 1.19) which can be explained because of the
non-uniform distribution of maximum values of the criterion as shown in Figure 6. This configuration also
occurs in capillary dominated cases. When gravitational effects are included, with or without capillary
effects, Cmax = 1 is no longer stable and should be reduced . Nonetheless, this latter criterion remains
more efficient than Co driven simulation. The non-gravitational configuration is reported to be stable
with value of Cmax = 2.0 in [8].
For the challenging 2D cases that include gravity forces, Todd’s criteria T has to be tuned to ensure

stability. A prefactor δ is introduced as suggested in [7]. The values of this factor are respectively δ = 1/16
for the gravity driven case and δ = 1/32 for the capillary-gravity case.

4. Conclusion

IMPES algorithm and its sequential structure still represent an interesting alternative to coupled ap-
proaches when treating problems with a challenging number of grid cells as required by highly detailed
models. However, due to the specific form of conservative equations, the derivation of stability crite-
rion more adapted than classic CFL condition is needed. Several contributions have tried to define more
adapted saturation and pressure variation criterion [7] and still studying improvement on their formulation
[8].
In this study, these various criteria have been compared with the classical Courant number in various

conditions leading to the following observations. For homogeneous cases C method with limit set to
Cmax = 1 will ensure stability in every configuration. For 2D heterogeneous cases, the C method faces
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two configuration:
— When saturation front is diffuse, which is the case for capillary or viscous dominated flows, it is safe

to use limit as Cmax = 1. However, it can be noted that the T method offers an interesting alterna-
tive, leading to stable and fastest simulation. An alternative approach in the capillary dominated
cases is to switch to an implicit formulation, which suffer less from the loss of efficiency.

— When saturation front is sharp, which is the case for gravity and capillary-gravity cases, phases are
segregated and users have to limit criterion to Cmax = 0.25, in order to keep the simulations table.
In the capillary-gravity configuration, the T - method leads to similar performance as the C-method.

Even if Co driven simulations can give better results in some cases, it remains a condition too dependent
on the considered case. Comax limit to be imposed for ensuring stability can differ by a factor of 1000 and
makes this criterion unreliable. Following this work, it would be relevant to perform such a benchmark
on the compressible formulation of IMPES or three-phase flow to confirm or invalidate the observations
of this study.
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